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exist, the branching cavity has a loaded Q equal to

$Qh and it is not matched. At midband, entering in any

port, the normalized reflected power is 1/9 and the

normalized transmitted power to each of the other two

ports is 4/9.

By definition, the Q of a cavity is

Q+’ (16)

where w is the energy stored in the cavity, u is the angu-

lar frequency and P is the power leaving the cavity.

The loaded Q of either cavity when they are operating

together, that is, the Q measured in the dropped chan-

nel is

(17)

where P, is the power carried by either of the two radi-

ally propagating waves that build the standing wave in

each cavity. The calculation is straightforward and

The intrinsic Q of a cavity is obtained from (16) when

P is the power dissipated in the walls, and the result is

2(b –“ a’)3
Q,= ~i,–— 1 —

b–a’ ~“

()
1+ —

to

(19)

8 = ~2/WPg is the skin depth, u is the angular frequency,

K the permeability and g the conductivity of the metal.

Eqs. (18) and (19) may be applied to either of the

cavities by choosing the appropriate dimensions given

in (14) and (15).
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Surnmarg-The coupled-mode theory is developed for two-di-

mensional M-type flow, and a system of five coupled-mode equations
is obtained. A fifth degree secular equation is found for the perturbed
propagation constants of the system. Under weak space-charge field
conditions, both the forward-wave and backward-wave interactions
may be described in terms of only two coupled modes. The two-
mode theory is appfied to the calculation of starting conditions for the

M-BWO, and to the M-FWA. The conditions for beating-wave am-
plification are determined, and the variation of the mode amplitudes

with distance is given.

INTRODUCTION

T
HE coupled-mode theory has been used exten-

sively to describe the operation of the traveling-

vrave amplifier and backward-wave oscillator. 1–3

In these analyses, the four mode equations refer to the

two beam space-charge waves and the two circuit waves.

In both the O-type amplifier and the backward-wave
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oscillator, the best interaction occurs near synchronism

between the slow space-charge wave and the circuit

wave, and three waves are sufficient to describe the

interaction, the fourth being far out of synchronism

with the electron beam. Under large space-charge condi-

tions in O-type devices, the interaction is accurately

described by utilizing only the slow space-charge wave

and the forward circuit wave. The coupled-mode analY-

sis has great utility in obtaining a clear understanding of

the detailed interaction mechanism.

Heretofore, the IV-type interaction has not been

studied with the coupled-mode theory. The general

analysis is somewhat more complicated than that for the

O-t ype, since there are five waves involved, which leads

to a fifth-degree secular equation. When the RF struc-

ture is matched at its output, and the device is operated

near synchronism between the electron beam and the

foward circuit wave, the interaction is principally due

to two waves. This two-wave interaction occurs for low

space-charge conditions, unlike the corresponding condi-

tions in the O-type tube. It is the purpose of this paper

to develop the coupled-mode description for planar lK-

type amplifiers and oscillators and to show how this

description may be used to investigate growing-wave

gain, beating-wave gain and start-oscillation phe-

nomena.
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CIRCUIT AND BALLISTIC EQUATIONS

It is convenient to formulate the circuit and ballistic

equations using the equivalent circuit analysis, and

following the methods of Pierce. 4 The geometry env-

isaged is that of a relatively thin planar strip beam

flowing in orthogonal electrostatic and magnetostatic

fields between planar electrodes as illustrated in Fig. 1.
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Fig. I—M-tYpe interaction configuration.

It is assumed that the space-charge conditions satisfy

Brillouin flow requirements. It is well known that this

is a problem in two-dimensional space-charge flow, and

hence, the fields vary in the transverse dimension.

The circuit, ballistic, and continuity equations are

expressed as shown below for both the M -FWA and

the M-BWO.

where

and

PE = P@(Y) + Po@’(y)y.

The quantities introduced in the above equations

defined as follows:

~ J. R. Pierce, “Traveling-Wave Tubes, ” D. Van Nostrand
Inc., New York, N. Y., ch. 15; 1950.

(1)

(2)

(3)

(4)

(5)

(6)

are

co.,

V,= RF voltage on the circuit

1,= RF current along the circuit

K.= circuit impedance

(30= unperturbed circuit phase constant

p = beam space-charge density

p~ = total effective space-charge density

~b = effective electron beam convection current

density

@(y) = transverse potential dependence, and

B = magnetic induction.

In the case of the double signs, the upper one refers to

the M-FWA and the lower to the M-BWO. It is con-

venient to introduce the following new variables into (3)

and (4), the ballistics equations:

vlb A – ~:

Vzb$–z

,8C ~ qB/uo.

The result is

(7)

(8)

Eq. (5), the continuity equation, is written in terms of

the new variables, using (6), as

where

– 0’ (y) @’(y)
A _ _——a=—

B@’(Y) jroo(y)

~, ~ @2K’1”

2U02

170= unperturbed circuit spatial propagation constant

for the z-direction,

and

d@(y)
o’(y) = —

dy “

A beam impedance K, is defined

Eq. (10) is now written as

b~, l/Kb = 2C3fle/.Ecflc.

+ avzb) = 0. (11)
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Eqs. (8) and (9) are transformed, using (1) and the

definitions of a and C:

and

MODE FORMALISM

The coupled-mode formalism is now conveniently

introduced into the circuit, ballistics and continuity

equations with the aid of the following definitions. These

definitions are made to simplify the final equations, and

they give the wave amplitudes as being proportional to

square root power.

Circuit Modes:

Beam Modes:

(14)

(15)

(16)

(17)

After introduction of the definitions contained in

(14)-(18), the circuit and beam coupled-mode equations

are expressed as follows:

(1– a)
Tj

2 ()
/30 : “’(P. – Q.) = O (19)

(20)

(21)

and

aQc (1 – a) Kc ‘/2

()

(1 + a)
~ T j@oQ. – j ~ (8. + /%)plb+j—~-

2

Eqs. ( 19)–(23) constitute the five coupled-mode equa-

tions for M-type interactions. These equations are writ-

ten in terms of the unperturbed wave propagation con-

stants; the next step is to develop the secular equation

from their simultaneous solution. The uncoupled phase

constants will be perturbed as the coupling between the

individual modes is increased.

The roots of the determinant formed from the coeff-

icients of the modes P., QC, Qb, Plb, and f’~b give the fol-

lowing secular equation. It is assumed that all modes

vary as exp (jot – I’z).

[(j@e– r)’ + @cZ](–r+jfh)(r’ + ,&J2)

(= 5e80r2EP (jPe – r) + 2jP, ~
)l+aj’

(24)

wh,ere

H2 ~ 2C3(1 + a’).

This dispersion equation agrees with that obtained by

Pierce. 4 It is worthwhile to proceed one step further

and verify the possibility of amplification in such a sys-

tem. Under the condition that p. +6, = Po, approximately

only the modes P15 and P. are coupled (cyclotron-wave

interaction); hence, the determinant becomes

= O. (25)

For cyclotron-wave interaction, the electron motion is

essentially circular, with equal y-directed and z-directed

energies, and the modes Q., Qb, and PZ5 are excited to a

negligible extent due primarily to weak coupling to the

circuit. Expanding the determinant and defining

17=~~,(1 +p) yields

(1 – a) /3. ‘/’H*=*1 (-)2 (1 + C#)lfz ‘& ‘
(26)

which agrees with Pierce. Gain occurs for all values of

a, and is a maximum for a= — 1.

FORWARD-WAVE AMPLIFIIZR

Under low space-charge conditions, the M -FWA may

be described in terms of two coupled modes, PC and

Plb. This is counter to the o-type FWA, which may be

described in terms of two coupled modes only for high
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space-charge conditions. It is convenient to write the

solution as

P. = .le–rl’ + Be–r2~, (27)

and then Plb may be expressed as

P,~ = – (j~~ – I’JAe-r’z – (j~~ – I’,)Be-r’z. (28)

The boundary conditions for the forward-wave amplifier

are expressed as follows for an initially unmodulated

stream:

P.=1

plb=() at Z=o. (29)

It is convenient to assume approximate synchronism

between the slow space-charge wave and the forward

circuit wave (13, =60), and write the propagation con-

stants in the following form:

rl, z = j~e + fieD61,2.

Under the above condition for maximum excitation of

the near-synchronous waves, the cyclotron waves are

negligibly excited, and hence, their effect is neglected.

Using the above form for r. yields

1
A = ——— and B = ——1—— ;

1 – 62//’81 1 – 8,/62

then

[

81 62
p, = e–l!% —— 1e–961_———e–ah, (30)

al – 62 61 – 82

where

6’ ~ ~.Dz = 27rD1V8.

For low space-charge conditions, the solution of the

dispersion equation for the perturbed propagation con-

stants yields

(31)

where b 2 (Bo –6,) /@~D.

For exact synchronism, the 6’s are purely real and

each wave is excited in equal amplitude, which indicates

that the initial loss factor for the M-FWA is – 6.02 db.

It should be noted that the mode amplitudes are pro-

portional to square-root power and hence, proportional

to the RF voltage in a matched system. It is interesting

to examine the first term of (31). For

1 – (b/2)2 > O; growing waves

= o; transition region

< O; beating waves.

The transition point occurs at b =2; for larger values of

b, both 6’s are purely imaginary.

The growing-wave regime has been investigated, and

excellent agreement has been obtained with the results

of MuHer.6 The square of the mode amplitude

beating-wave regime is readily expressed as

I PIZ = A’+ B2 + 2.4B ~OS@I - y,),

185

in the

(,32)

where yl, yz are the imaginary parts of the propagation

constants. At the input 0 = O,

IPCI=A+B=l, (33)

where B is a negative number. Under these conditions,

there are two purely propagating waves on the circuit

which are out of phase at the input and beat together,

adding in phase at the output. Since A >>0 and B <0,

the maximum of (32) occurs at (in phase condition)

n-
o = ——=——= —======

(yl – Y2) 2{(b/2)2 – 1 ‘
(’34)

At the maximum point,

lPG\= A-B. (35)

It is seen that the position of maximum gain, and the

maximum gain are solely functions of b. ‘The gain and

optimum length are given as a function of b in Table 1.

The predictions made using the two-wave couplled-

mode theory agree exactly with the general M-FWA

theory. The gain as a function of 6 and b is shown in

Fig. 2.
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Fig. 2—Gain vs /3for zero space charge.
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BACKWARD-WAVE OSCILLATOR

The il!l-type backward-wave oscillator may also be

described in terms of two coupled modes for low space-

charge conditions. In this instance, we deal with the

backward-circuit wave and the slow space-charge wave.

For the condition that ~.= (3., the coupled modes are

Q, and Q,, and the mode equations are

and

The roots of the determinant of the coefficients of the

above system give for the coupled propagation con-

stants

.,-.

+ d(h – Be)’+ 4Pe/30a:;] . (38)

Here again, it is convenient to write

Q. = A ,e-rlz + Ble-rzz, (39)

and then

where Al and B1 are yet undetermined. In the case of

the backward-wave oscillator, it is desired to find the

point along the structure z >0 where the energy in the

circuit field has been completely transferred to a beam

space-charge field. These boundary conditions on Q. and

Qrj are

Qb=O at z=O

QC=O at z=L. (41)

The above conditions give

Upon introduction of the propagation constants and

the velocity parameter, (42) becomes

b+ db’ +
4CI h“.

Di2 Kb

{j/
4a K.

= exp jO ,
}

b’+——. (43)
D,z h’b .

The radicals in (43) may be considerably simplified by

using the definitions of interaction parameter and trans-

verse field variation suggested by Dombrowski:6

CJKIO
DL2=_—_Gz

(d. 2 Vo

1 sinh 2jI’,(j – y,)
G’ = – — ———————–— . (+4)

2 sinh’ [jr”(y~ – y~)l

The result is

b-f- ~b’+4
_—— eiWb2H

&~b2+A= “
(45)

Eq. (45) is satisfied, and an oscillation condition exists

for

b=O

D,N. = ; = 0.25. (46)

These are exactly the start-oscillation conditions for a

M-BWO when the space-charge fields are weak as com-

pared to the circuit fields, independent of the beam posi-

tion between the anode and sole plates. This result indi-

cates that the energy is completely transferred between

the beam and the circuit every 90 degrees.

CONCLUSIONS

The general interaction between wave and beam for

two-dimensional ilf-type flow has been described in

terms of coupled modes, resulting in five mode equa-

tions. They are written in terms of the uncoupled mode

propagation constants and arise out of the ballistic,

circuit, and continuity equations. Under the conditions

of weak space-charge fields, both the forward-wave and

the backward-wave interactions lmay be described satis-

factorily in terms of two coupled modes. In the forward-

wave case, the mode equations were used to calculate

the optimum length and gain of a beating-wave ampli-

fier; for backward-wave interaction, starting conditions

were determined.

The development of a satisfactory coupled-mode the-

ory for a device hinges on the separate determination of

the wave coupling parameter in terms of device param-

eters. Based on the above results, it is felt worthwhile

to apply this coupled-mode approach to a study of

cyclotromwave interaction in crossed fields, in order to

obtain a physical picture of the interaction phenomena.

This technique could also be applied to a study of

cyclotron-wave parametric devices.
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