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exist, the branching cavity has a loaded Q equal to
20, and it is not matched. At midband, entering in any
port, the normalized reflected power is 1/9 and the
normalized transmitted power to each of the other two
ports is 4/9.

By definition, the Q of a cavity is

(16)

where w is the energy stored in the cavity, w is the angu-
lar frequency and P is the power leaving the cavity.

The loaded Q of either cavity when they are operating
together, that is, the ) measured in the dropped chan-
nel is

wWw
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where P, is the power carried by either of the two radi-
ally propagating waves that build the standing wave in
each cavity. The calculation is straightforward and

2567 (o @’ /b a’\*
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Xi2Xs2 Ny A \e d
The intrinsic Q of a cavity is obtained from (16) when
P is the power dissipated in the walls, and the result is

2(b — ')} 1

OA? b— a'\3
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8= /2/wpg is the skin depth, w is the angular frequency,
w the permeability and g the conductivity of the metal.

Egs. (18) and (19) may be applied to either of the
cavities by choosing the appropriate dimensions given
in (14) and (15).

(18)

(19)

Coupled-Mode Description of Crossed-Field Interaction”

J. E. ROWETf, MEMBER, 1RE, AND R. Y. LEET

Summary—The coupled-mode theory is developed for two-di-
mensional M-type flow, and a system of five coupled-mode equations
is obtained. A fifth degree secular equation is found for the perturbed
propagation constants of the system. Under weak space-charge field
conditions, both the forward-wave and backward-wave interactions
may be described in terms of only two coupled modes. The two-
mode theory is applied to the calculation of starting conditions for the
M-BWO, and to the M-FWA. The conditions for beating-wave am-~
plification are determined, and the variation of the mode amplitudes
with distance is given.

INTRODUCTION

HE coupled-mode theory has been used exten-
sively to describe the operation of the traveling-
wave amplifier and backward-wave oscillator.'—3
In these analyses, the four mode equations refer to the
two beam space-charge waves and the two circuit waves.
In both the O-type amplifier and the backward-wave
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oscillator, the best interaction occurs near synchronism
between the slow space-charge wave and the circuit
wave, and three waves are sufficient to describe the
interaction, the fourth being far out of synchronism
with the electron beam. Under large space-charge condi-
tions in O-type devices, the interaction is accurately
described by utilizing only the slow space-charge wave
and the forward circuit wave. The coupled-mode analy-
sis has great utility in obtaining a clear understanding of
the detailed interaction mechanism.

Heretofore, the M-type interaction has not been
studied with the coupled-mode theory. The general
analysis is somewhat more complicated than that for the
O-type, since there are five waves involved, which leads
to a fifth-degree secular equation. When the RF struc-
ture is matched at its output, and the device is operated
near synchronism between the electron beam and the
foward circuit wave, the interaction is principally due
to two waves. This two-wave interaction occurs for low
space-charge conditions, unlike the corresponding condi-
tions in the O-type tube. It is the purpose of this paper
to develop the coupled-mode description for planar M-
type amplifiers and oscillators and to show how this
description may be used to investigate growing-wave
gain, beating-wave gain and start-oscillation phe-
nomena.
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CIRCUIT AND Barristic EQUATIONS

It is convenient to formulate the circuit and ballistic
equations using the equivalent circuit analysis, and
following the methods of Pierce.* The geometry en-
visaged is that of a relatively thin planar strip beam
flowing in orthogonal electrostatic and magnetostatic
fields between planar electrodes as illustrated in Fig. 1.
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Fig. 1—M-type interaction configuration.

It is assumed that the space-charge conditions satisfy
Brillouin flow requirements. It is well known that this
is a problem in two-dimensional space-charge flow, and
hence, the fields vary in the transverse dimension.

The circuit, ballistic, and continuity equations are
expressed as shown below for both the M-FWA and
the M-BWO.

oV,
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where
iy = ®(y)(puo + pot)
and
= p®(y) + po®’ (¥)y. (6)

PE

The quantities introduced in the above equations are
defined as follows:

4 J. R. Pierce, “Traveling-Wave Tubes,” D. Van Nostrand Co.,
Inc., New York, N. Y., ch. 15; 1950.
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V.= RF voltage on the circuit

I,=RF current along the circuit
K, =circuit impedance

Bo=unperturbed circuit phase constant

p=Dbeam space-charge density

py=total effective space-charge density

7, =effective electron beam convection current

density
®(y) = transverse potential dependence, and
B =magnetic induction.

In the case of the double signs, the upper one refers to
the M-FWA and the lower to the M-BWO. It is con-
venient to introduce the following new variables into (3)
and (4), the ballistics equations:

A UoZ
Vig = — —
7P
st
v, 2 =22
7P
A
60 = nB/Mo. (7)
The result is
aVu, B aVL
—— + BV =BV — — (8)
dz Jz
and
Vs ®'(y)
+.eV:'_cV —Vc;—'—' 9
Py 1BV 2 BV 20) (9)

Eq. (5), the continuity equation, is written in terms of
the new variables, using (6), as

. J 9 208 ,
7p — ; 67 =3 -}— (Vlb -]aVitb), (10)
where
A~V P0)
q = =
Bo(y)  jTo@(y)
C3 A ’I’](bchIU

2%02

I'¢=unperturbed circuit spatial propagation constant
for the z-direction,
and

o 420
'(y) = o

A beam impedance K, is defined by 1/K;=2C38./K.8..
Eq. (10) is now written as
O

Be
g + jBeir — *I‘(‘b‘ GV + aVa) = 0. (11)
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Egs. (8) and (9) are transformed, using (1) and the
definitions of « and C:

aVlb
Jz

+jBPI/1b - 6CV2IJ ? jﬁOKcIE = 0 (12)

and

Ve |
P) - +_769V2b + ﬁcvlb + a,BOKcIc = 0.
Z

(13)

Mope ForMaLIsSM

The coupled-mode formalism is now conveniently
introduced into the circuit, ballistics and continuity
equations with the aid of the following definitions. These
definitions are made to simplify the final equations, and
they give the wave amplitudes as being proportional to
square root power.

Crrcust Modes:

A 1 Vc
P, =— K. I, 14
(Gt vEE) o
2l ( Ve VK 1) (15)
QC - 2 \/Iz cle
Beam Modes:
A
Py = v Ve 16
15 NG ( 1+ V) (16)
Po 2 (Viy— V) (17)
26 = 2\/72; 1b TV 28
1 /vVaVy Vs 'K»
— i — 13 ). 18
Qs 2 < VK, j\/aKb o 1b> (18)

After introduction of the definitions contained in
(14)—(18), the circuit and beam coupled-mode equations
are expressed as follows:

(’)Pu, .
— +j(B. + B) P
9z

:Ej(i:a—)ﬁo<K°>m(Pc —Q) =0 (19

2 Ky
Py
“é;— + 7(8, — Be) P
70t < c>1/2<Pc —Q) =0 (20
2 Ky

10 . . aK \12
- +],89Qb + ]60 < > (P{ - Qc = ( (21)
Jz Kb

50

K,\1/? aK \1/2
.= 8P Y o =0
(Kb> (Be — Bo)Pap + j8. <Kb> Qs

Be+BI)Pr—J L_Z—a)

(22)
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and

¢ 1—a Kc /2 +
;2 F 7B0Q. — (—2—)<Kb> 8. '1“[%)})11;-}'](_2—2

K, \!/? aK,\/?
e cP — 7 e :O‘
(Kb> ] B.) P2y — I8 < X > Qs

Eqgs. (19)—(23) constitute the five coupled-mode equa-
tions for M-type interactions. These equations are writ-
ten in terms of the unperturbed wave propagation con-
stants; the next step is to develop the secular equation
from their simultaneous solution. The uncoupled phase
constants will be perturbed as the coupling between the
individual modes is increased.

The roots of the determinant formed from the coeffi-
cients of the modes P, Q., Qs, Pw, and Py give the fol-
lowing secular equation. It is assumed that all modes

vary as exp(jwt—1'z).
[(8e — T)2 + B2(—T + jBa) (T + 8¢2)
24
= B8.8:T2H2( (j8. — T') + 248. . (24
BeBo ((JB )+ ]51+a2> (24)

(23)

where

H? = 2031 + a?).

This dispersion equation agrees with that obtained by
Pierce.* It is worthwhile to proceed one step further
and verify the possibility of amplification in such a sys-
tem. Under the condition that 8,48, =3, approximately
only the modes Py, and P, are coupled (cyclotron-wave
interaction); hence, the determinant becomes

.(1—01) K \1?
2 6°<Eb>

—TI'+jBo

—T'+j(8.48.)

(K. ”2(1—a)( )
]<Kb> BetB.

= 0. (25

For cyclotron-wave interaction, the electron motion is

essentially circular, with equal y-directed and z-directed

energies, and the modes Q., Oy, and Py are excited to a

negligible extent due primarily to weak coupling to the

circuit. Expanding the determinant and defining
=jBo(1+p) yields

L1 e oy,
Py v aye\s)

which agrees with Pierce. Gain occurs for all values of
«, and is a maximum for a= —1.

(26)

ForwARD-WAVE AMPLIFIER

Under low space-charge conditions, the M-FWA may
be described in terms of two coupled modes, P, and
Py. This is counter to the O-type FWA, which may be
described in terms of two coupled modes only for high
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space-charge conditions. [t is convenient to write the
solution as

P, = deT1s 4 Be T, (27)
and then Py, may be expressed as
Py = — (jBo — o) Ade™T1s — (jBo — T'y)Be 22, (28)

The boundary conditions for the forward-wave amplifier
are expressed as follows for an initially unmodulated
stream:

P, =1

Pip=0 at z=0. (29)

It is convenient to assume approximate synchronism
between the slow space-charge wave and the forward
circuit wave (B.~fo), and write the propagation con-
stants in the following form:

Ti,2 = jB. + B.Db1,2.

Under the above condition for maximum excitation of
the near-synchronous waves, the cyclotron waves are
negligibly excited, and hence, their effect is neglected.
Using the above form for T', yields

1
4 =— — and B=-———;
1 — 52/51 1 — 51/52
then
01 s
P, = ¢gibe| — eI — ———— e—”{l, (30)
51 — B9 61 — 02

where

9 = 8,Dz = 2rDN,.

For low space-charge conditions, the solution of the
dispersion equation for the perturbed propagation con-
stants yields

. b
810 =+ 41— (b/2)? —i—j?; (31)
where b2 (80—8.)/8.D.

For exact synchronism, the §’s are purely real and
each wave is excited in equal amplitude, which indicates
that the initial loss factor for the M-FWA is —6.02 db.
It should be noted that the mode amplitudes are pro-
portional to square-root power and hence, proportional

to the RF voltage in a matched system. It is interesting
to examine the first term of (31). For

1 - (/2)2 > 0; growing waves
= 0; transition region
< 0; beating waves.

The transition point occurs at b=2; for larger values of
b, both &'s are purely imaginary.

The growing-wave regime has been investigated, and
excellent agreement has been obtained with the results
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of Muller.® The square of the mode amplitude in the

beating-wave regime is readily expressed as
| P,|2= A2+ B>+ 24Bcos0(y: — y2), (32)

where ¥, ¥ are the imaginary parts of the propagation
constants. At the input =0,

| P.|=4+ B=1,

(33)

where B is a negative number. Under these conditions,
there are two purely propagating waves on the circuit
which are out of phase at the input and beat together,
adding in phase at the output. Since 4 >0 and B <0,
the maximum of (32) occurs at (in phase condition)

7r T
6= = (34)
(1 —y2)  2V/(b/2)* — 1
At the maximum point,
| P.] = 4 — B. (35)

It is seen that the position of maximum gain, and the
maximum gain are solely functions of &. The gain and
optimum length are given as a function of b in Table I.

The predictions made using the two-wave coupled-
mode theory agree exactly with the general M-FWA
theory. The gain as a function of # and b is shown in
Fig. 2.

TABLE I
LENGTH AND GAIN FOR BEATING-WAVE INTERACTION

b Bon py | Voltage Ga
2.02 11.11 1.77 7.15 17.10
2.05 7.05 1.12 4.6 13.25
2.1 4.97 0.79 3.32 10.40
2.2 3.45 0.55 2.41 7.60
2.3 2.78 0.44 2.04 6.16
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Fig. 2—Gain vs 6 for zero space charge.

5 M. Muller, “Traveling-wave amplifiers and backward-wave
oscillators,” Proc. IRE, vol. 42, pp. 1651-1659; November, 1954.
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BACKWARD-WAVE OSCILLATOR

The M-type backward-wave oscillator may also be
described in terms of two coupled modes for low space-
charge conditions. In this instance, we deal with the
backward-circuit wave and the slow space-charge wave.
For the condition that 8,~f8,, the coupled modes are
Q. and Q,, and the mode equations are

a0, aK \1?

*5; + jBeQe — 78, <_K7> Or=0 (36)
and

0w aK \1/?

o + jﬁeQb — JBo <Kb> Q.= 0. (37)

The roots of the determinant of the coefficients of the
above system give for the coupled propagation con-
stants

Ty = —]2—[(50 +8)

K.
+ /‘/(60_ﬁe)2+46e,60a_,:|‘ (38)
K

Here again, it is convenient to write

Qo = Ale_rlz —+ Ble_r“, (39)

and then

Qs = (jBo — T) A1e7™% + (jBo — T'a) Bie™'%,  (40)

where A; and B are yet undetermined. In the case of
the backward-wave oscillator, it is desired to find the
point along the structure z>0 where the energy in the
circuit field has been completely transferred to a beam
space-charge field. These boundary conditions on Q, and
Qy are

szo at z2=20

Q. =0 at z= (41)
The above conditions give
éi — '/"i:_E I e—I‘zL/e—I‘lL‘ (42)
B, 780 — Ty

Upon introduction of the propagation constants and
the velocity parameter, (42) becomes
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The radicals in (43) may be considerably simplified by
using the definitions of interaction parameter and trans-
verse fleld variation suggested by Dombrowski:®

2 w K I() Y
' —wc 2V
1 sinh 2/Ty(5 — v,
Gro L SiohY o —3) (44)
2 sinh? [To(ya — y,)]
The result is
I
b__l—_\/_b_ii = /0VbETE (45)
b— b+ 4

Eq. (45) is satisfied, and an oscillation condition exists
for

0
DN, = — = 0.23.

™

(46)

These are exactly the start-oscillation conditions for a
M-BWO when the space-charge fields are weak as com-
pared to the circuit fields, independent of the beam posi-
tion between the anode and sole plates. This result indi-
cates that the energy is completely transferred between
the beam and the circuit every 90 degrees.

CONCLUSIONS

The general interaction between wave and beam for
two-dimensional A{-type flow has been described in
terms of coupled modes, resulting in five mode equa-
tions. They are written in terms of the uncoupled mode
propagation constants and arise out of the ballistic,
circuit, and continuity equations. Under the conditions
of weak space-charge fields, both the forward-wave and
the backward-wave interactions may be described satis-
factorily in terms of two coupled modes. In the forward-
wave case, the mode equations were used to calculate
the optimum length and gain of a beating-wave ampli-
fier; for backward-wave interaction, starting conditions
were determined.

The development of a satisfactory coupled-mode the-
ory for a device hinges on the separate determination of
the wave coupling parameter in terms of device param-
eters. Based on the above results, it is felt worthwhile
to apply this coupled-mode approach to a study of
cyclotron-wave interaction in crossed fields, in order to
obtain a physical picture of the interaction phenomena.
This technique could also be applied to a study of
cyclotron-wave parametric devices.

6 G. E. Dombrowski, “A Small-Signal Theory of Electron-Wave
Interaction in Crossed Electric and Magnetic Fields,” Electron Tube
Lab., The University of Michigan, Ann Arbor, Mich. Tech. Rept.
No. 22; October, 1957.



